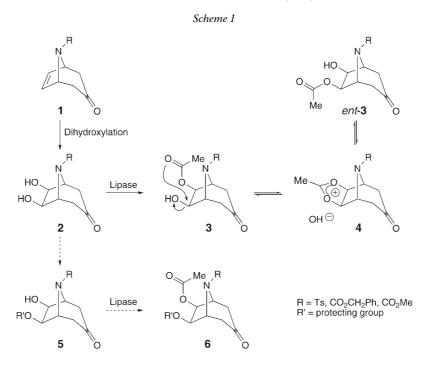
Enzymatic Resolution of O-(Methoxymethyl)-Protected Tropane-diols

by Olena Affolter, Angelika Baro, Sabine Laschat*, and Peter Fischer

Institut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (phone: +49-711-68564565; fax: +49-711-68564285; e-mail: sabine.laschat@oc.uni-stuttgart.de)

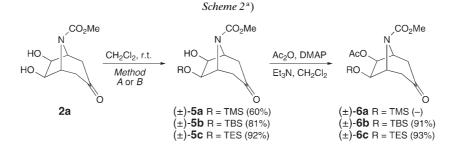
Dedicated to Professor Gerhard Simchen on the occasion of his 75th birthday


A convenient synthetic route to enantiomerically pure tropane-diol building blocks is described. The reaction sequence started from tropenone derivatives **1**, which were dihydroxylated to give 6,7-dihydroxytropanone derivatives **2**. After introduction of the methoxymethyl (MOM) protecting group in diol **2a**, a lipase-mediated resolution of the resulting racemic mono-MOM ether (\pm) -**5d** with vinyl acetate and vinyl trifluoroacetate gave the acetates (-)-**6d** and (-)-**6f**, respectively, with 96–99% ee, and MOM ether (+)-**5d** with up to 89% ee. Deacetylation of (-)-**6d** afforded quantitatively MOM ether (-)-**5d** with 99% ee, the absolute configuration of which was assigned *via* the modified *Mosher* method to be (*R*) at C(6). Enzymatic treatment of unprotected diol **2a** with vinyl trifluoroacetate or alkoxycarbonylation resulted in the formation of C_s -symmetrical products **9** and **12** rather than the desired desymmetrized derivatives.

Introduction. – Due to their biological activities, tropane alkaloids and derivatives thereof have been studied extensively over the last decades [1] (for some recent examples, see [2]). Furthermore, tropanes (=8-methyl-8-azabicyclo[3.2.1]octanes) also provide useful chiral scaffolds for ligands in asymmetric catalysis [2e][3]. While the majority of tropane syntheses relied on either *de novo* routes or scopolamine as starting material [1][2], little work has been devoted to the functionalization *via* enantioselective deprotonation of tropinone [4], hydroboration of tropenone derivatives **1** to the corresponding chiral alcohol [5], or enzymatic resolution of the latter [6]. In a previous paper, we reported the dihydroxylation of tropenone derivatives **1** and subsequent lipase-mediated acetylation of the corresponding diols **2** to give the mono acetates **3**, which might be further functionalized (*Scheme 1*)¹) [8]. However, it turned out that the direct enzymatic acylation of the diols **2** provided racemic mixtures of mono acetates **3** [9].

We anticipated that, even if the enzyme shows some enantioselectivity, the presence of the free OH group in compounds **3** accelerates the formation of an acetoxonium ion **4**, which may be opened to yield either **3** or *ent*-**3** (*Scheme 1*). Such acyl migration is well-known in carbohydrate chemistry [10], terminal 1,2-diols [11], mono- and diglycerides [7][12], 1,3-diols [13], and amino alcohols [14], resulting in reduced regio- and enantioselectivities. *Bäckvall* and co-workers utilized fast acyl migrations for dynamic kinetic asymmetric transformations, *i.e.*, one-pot lipase-catalyzed acylations of

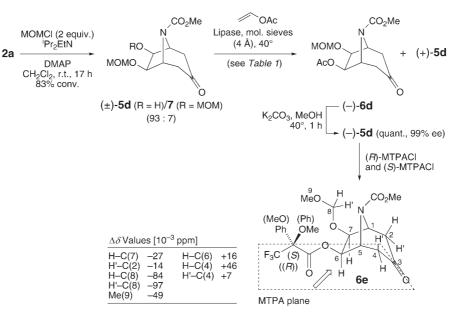
¹) For lipase-catalyzed reactions of 1,2-diols, see [7].


^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

1,2- and 1,3-diols, Ru-catalyzed epimerizations, and intramolecular acyl migration to affect the formation of optically pure *syn*-1,2- and *syn*-1,3-diacetates [15]. With regard to 6,7-dihydroxytropinone derivatives 2, neither of the above mentioned approaches was successful, and, thus, we decided to introduce a protecting group prior to enzymatic acetylation (*Scheme 1*). The results along this direction are reported below.

Results and Discussion. – To find a suitable protecting group, dihydroxy-tropanecarboxylate **2a**, which was accessible in 75% yield by treatment of **1** ($\mathbf{R} = CO_2Me$) with K_2OsO_4 and *N*-methylmorpholine *N*-oxide monohydrate (NMO) in a mixture of acetone/H₂O/t-BuOH 10:2:1 [9][16], was first reacted with various silylation reagents (*Scheme 2*). While treatment with TMSCl in the presence of *Hünig* base yielded the corresponding racemic mono-silylated carboxylate **5a** in 60% (*Method A*), both silyloxy derivatives **5b** and **5c** were obtained in a similar manner in 81 and 92% yield, respectively (*Method B*). In the case of **5b**, the corresponding disilylated compound was obtained in 3% yield. The chemical acetylation of silyloxy derivatives (\pm)-**5b** and **5c** with Ac₂O, DMAP, and Et₃N in CH₂Cl₂ gave the corresponding acetates (\pm)-**6b** and **6c**, respectively in > 90% yield (*Scheme 2*). However, under these conditions the TMS group in (\pm)-**5a** was removed, finally giving the corresponding mono- and diacetate. It must be noted that desilylation of TMS derivative **5a** was observed even at storage.

Treatment of protected dihydroxy compounds (\pm) -**5** with vinyl acetate and lipases Chirazyme L-1 and L-6 and Novozyme 435 (*Candida antarctica* lipase B), however, did not give any trace of the desired acylation products **6**. Presumably, the bulky silyl



^a) *Method A*: Me₃SiCl (TMSCl), EtNⁱPr₂, 1 h. *Method B*: (*t*-Bu)Me₂SiCl (TBSCl) or Et₃SiCl (TESCl), Et₃N, 4-(dimethylamino)pyridine (DMAP), 5 h.

groups prevent access to the active site of the enzymes. Even Chirazyme L-5 (*Candida antarctica* lipase A), which is known to accept sterically hindered alcohols [17], did not yield **6**.

Therefore, methoxymethyl (MOM) was introduced as an alternative protecting group (*Scheme 3*). The lipophilic binding site of the lipases might favor a MOM acetal over more polar carboxylates, while simultaneously allowing the OH group to be attacked by the enzyme. Treatment of the dihydroxy derivative 2a with 2 equiv. MOMCl in the presence of *Hünig* base and DMAP gave a mixture of mono- and bis-MOM ether 5d and 7 in a ratio of 93:7, which was not separable by column chromatography (*Scheme 3*). The chemical acetylation of 5d to 6d under the above

Scheme 3. MOM Protection of Diol **2a**, Subsequent Lipase-Catalyzed Resolution of (\pm) -5d, and Assignment of the Absolute Configuration of (-)-5d According to Kakisawa and co-workers [18]

mentioned conditions proceeded in 74% yield. For enzymatic resolution of (\pm) -5d with
vinyl acetate, various lipases and solvents were investigated at 40° (<i>Table 1</i>).

= + 0 /

Entry	Solvent	Enzyme ^a)	Time [h]	Conv. [%]	Yield [%] ^b)	% ee ^c)
1	Toluene	Chirazyme L-1	47	23	-	5
2	Toluene	Chirazyme L-5	48	3	_	-
3	Toluene	Chirazyme L-6	47	38	33	96
4	Toluene	Novozyme 435	48	7	_	-
5	CH_2Cl_2	Chirazyme L-1	26	5	_	-
6	CH_2Cl_2	Chirazyme L-5	24	3	_	-
7	CH_2Cl_2	Chirazyme L-6	24	2	_	-
8	CH_2Cl_2	Novozyme 435	26	3	_	-
9	Et_2O	Chirazyme L-1	4.5	14	_	50 ^d)
10	Et_2O	Chirazyme L-1	16	38	_	15 ^d)
11	Et_2O	Chirazyme L-1	18	51	41	8 ^d)
12	Et_2O	Chirazyme L-5	24	_	_	-
13	Et_2O	Chirazyme L-6	4.0	48	38	96
14	Et_2O	Chirazyme L-6	5.5	40 ^e)	31	96
15	Et ₂ O	Novozyme 435	6.0	11	_	> 99
16	Et ₂ O	Novozyme 435	24	51°)	45	99

Table 1. Enzymatic Acetylation of MOM Ether (\pm) -5d with Various Lipases to Acetate 6d

^a) Chirazyme L-1 from Pseudomonas sp., Chirazyme L-5 from Candida antarctica, Chirazyme L-6 from Pseudomonas cep., and Novozyme 435 from Candida antarctica. b) Yield of isolated 6d. c) Enantioselectivities were determined by capillary GC on chiral stationary phase Bondex $un-\beta$.^d) Opposite enantiomer (+)-6d is preferred. c) (+)-5d was isolated in 59% yield with 65% ee (Entry 14) and in 40% yield with 82% ee (Entry 16).

Lipase Chirazyme L-6 gave promising results (Entries 3 and 13). In toluene and Et_2O , respectively, good conversions and high enantiomeric excesses of 96% ee were obtained. In one case, the hydroxy derivative (+)-5d was isolated in 59% yield with 65% ee besides enantiomerically pure (-)-6d (96% ee; Entry 14). In Et₂O, also Novozyme 435 led to exceptional ee values of 99% but reacted much slower than Chirazyme L-6 (Entries 15 and 16). After 24 h reaction time, racemic MOM derivative (\pm) -5d was resolved to give (-)-6d with 99% ee, and (+)-5d in 40% yield and 82% ee (Entry 16). The other lipases Chirazyme L-1 and L-5 are less suitable independent of the solvent, giving low conversion and enantiomeric excess.

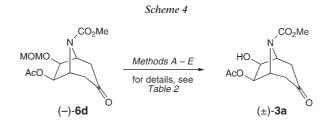
Whereas Et₂O was found to be the best solvent, CH₂Cl₂ was not suitable regardless of the enzyme used (*Entries* 5-8). Similar results were obtained for acetone and MeCN (not shown). It should be noted that, in Et₂O, Chirazyme L-1 resulted in the formation of the opposite enantiomer (+)-6d (*Entries* 9–11).

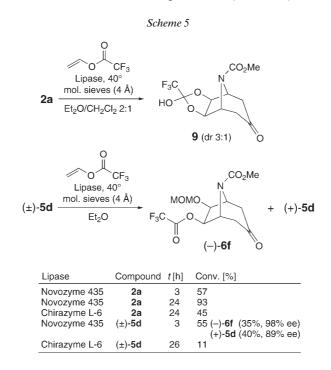
Concerning the further functionalization, the MOM acetate (-)-6d was deacetylated with K_2CO_3 in MeOH [18]. The reaction proceeded cleanly, and the enantiomerically pure MOM hydroxy derivative (-)-5d was obtained quantitatively with 99% ee (Scheme 3). The absolute configuration of (-)-5d was elucidated by NMR analysis according to the modified Mosher method [19] (Scheme 3). Compound (-)-5d was treated with (+)-(S)- and (-)-(R)-MTPACl (MTPACl = α -methoxy- α -(trifluoromethyl)phenylacetyl chloride) in the presence of pyridine at room temperature to give the

1990

diastereoisomeric *Mosher* esters (R)-6e and (S)-6e. ¹H-NMR Spectra in CDCl₃ at room temperature, however, revealed a significant broadening of the signals for H-C(2), H-C(4), H-C(1), and H-C(5), rendering an assignment impossible. After considerable experimentation, C₂D₂Cl₄ at 393 K turned out to give the best results, thus avoiding any problems with rotamers at lower temperatures [9]. The ¹H, ¹³C long-range COSY of ester (*R*)-6e at 393 K revealed ${}^{3}J$ correlations between the ${}^{13}C$ signal of C(8) at δ 96.4 ppm and the ¹H signal of Me(9) at δ 3.30 ppm, as well as the *doublet* for H-C(7) at δ 4.14 ppm. The ¹H signal of the ester MeO group at δ 3.70 ppm showed a ³J coupling with the ¹³C signal of the ester CO group. The ¹³C signals of C(2) and C(4) at $\delta = 45.4$ and 44.9 ppm were assigned according to ³J correlation of C(2) with H–C(7) at δ 4.14 ppm. In the ¹H,¹³C long-range COSY of the diastereoisomeric ester (S)-6e a ³J coupling between the C(4) signal at δ 44.9 ppm and the *doublet* of H-C(6) at δ 5.10 ppm, and a ³J coupling between the signal of C(2) at δ 45.5 ppm and the *doublet* of H–C(7) at δ 4.11 ppm were observed. Further assignments were accomplished by H,H-COSY measurements of both esters **6e** and the $\Delta\delta(\delta_{\rm S} - \delta_{\rm R})$ values were obtained (Scheme 3). Applying Kakisawa's rules [19], the configuration at C(6) of (-)-5d was assigned as (R).

In contrast to the deacetylation, deprotection of (-)-6d resulted in all cases in the formation of racemic acetate (\pm) -3a (*Scheme 4* and *Table 2*).



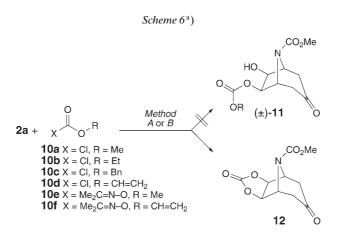

Table 2. Deprotection of MOM Acetate (-)-6d to Acetate 3a

Method	Conditions	Conversion [%]
A	Me ₃ SiBr, CH ₂ Cl ₂ , reflux, 24 h	36
В	$BF_3 \cdot OEt_2$, MeCN/H ₂ O, 2 h	50
С	TsOH, dioxane/ H_2O 6 : 1, reflux, 5 h	48
D	TsOH, dioxane/H ₂ O 3:1, reflux, 6 h	73
Ε	TFA, CH_2Cl_2 , r.t., 5 h	quant. ^a)

^a) Yield of isolated (\pm) -**3a**: 66%.

As shown in *Table 2*, Me₃SiBr in refluxing CH₂Cl₂ [20], BF₃ · OEt₂ in a mixture of MeCN/H₂O [21] and catalytic amounts of TsOH in dioxane/H₂O [22] led to low conversions. Upon increasing the amount of H₂O (*Method D*), the conversion was increased to 73%, but besides the desired acetate **3a**, 10% of dihydroxy derivative **2a** was formed. Complete removal of the MOM group was realized with TFA in CH₂Cl₂ at room temperature [23], and the target acetate **3a** was isolated in 66% yield, albeit being racemic (*Method E*).

Probably, as already observed for the enzymatic acylation of the dihydroxy carboxylate **2a** [9], owing to the free OH group again, the Ac migration dominated under the acidic reaction conditions. We anticipated that the electron-withdrawing CF₃CO group might disfavor the formation of the intermediate acetoxonium cations **4**. Surprisingly, little is known about the enzymatic resolution with lipase employing vinyl trifluoroacetate except one publication by *Miyazawa et al.* who studied the *Achromobacter* sp. lipase [24]. We used Chirazyme L-6 and Novozyme 435 for the enzymatic acylation of **2a** with vinyl trifluoroacetate at 40°. The solvent mixture Et₂O/CH₂Cl₂ 2 : 1 was chosen, because **2a** was not soluble in pure Et₂O (*Scheme 5*).



As can be seen, the two lipases differed remarkably in their reactivity. Surprisingly, a closer inspection of the NMR spectra revealed that, independent of the type of lipase, the 2-hydroxy-2-(trifluoromethyl)dioxole derivative **9** was obtained as a 3:1 mixture of diastereoisomers instead of the expected α -hydroxy-trifluoroacetate analogue of **3a**. A spectroscopic evidence for compound **9** is the quaternary-C signal at δ 115.8 and 116.7 ppm in the ¹³C-NMR spectrum as compared to the signal of the C=O group in **6f** at δ 157.0 ppm. When **2a** was treated with (CF₃CO)₂O, again dioxole derivative **9** was formed as a 3:1 diastereoisomeric mixture. That means that the α -hydroxy trifluoroacetate has an even more pronounced tendency to form the acetoxonium ion than the corresponding α -hydroxy-acetate **3a**.

To check whether vinyl trifluoroacetate may lead to enantioselective acylation in cases where no acyl migration is possible, the MOM derivative (\pm) -5d was resolved with vinyl trifluoroacetate, and either Chirazyme L-6 or Novozyme 435 (*Scheme 5*).

Chirazyme L-6 gave only low conversion. In contrast, Novozyme 435 yielded (-)-6f in 35% with 98% ee, and MOM derivative (+)-5d in 40% with 89% ee.

In a final attempt, the enzymatic alkoxycarbonylation²) of unprotected dihydroxy compound **2a** was investigated because the corresponding carbonate is proposed to be less prone to acyl migration. First, as shown in *Scheme 6*, unprotected **2a** was reacted with various carbonic acid derivatives **10a** – **10d** in the presence of Et_3N and DMAP, but surprisingly, instead of derivative (±)-**11**, only *meso*-carbonate **12** was formed (*Method A*). In the case of **10a** and **10b**, compound **12** was isolated in 91 and 51% yield, respectively.

^a) *Method A*: **10a** – **10b**, Et₃N, DMAP, CH₂Cl₂. *Method B*: **10e** and **10f**, Novozyme 435 or Chirazyme L-6, THF, 40° .

Upon treatment of **2a** with carbonic acid derivatives **10e** and **10f** in the presence of lipases Novozyme 435 or Chirazyme L-6 (*Method B*), again only compound **12** and no trace of the desired carbonate **11** was observed. Carbonate **12** was independently obtained in 58% yield by reaction of **2a** with *N*,*N*-carbonyldiimidazole in CH_2Cl_2 at room temperature.

Conclusions. – To overcome the racemization by acyl migration, dihydroxy derivative **2a** was protected with MOMCl prior to the lipase-mediated acetylation. Indeed, this synthetic strategy allowed resolution of the MOM derivative (\pm) -**5d** with vinyl acetate and lipases Chirazyme L-6 and Novozyme 435 to give enantiomerically pure acetate (-)-**6d** (96–99% ee) and (+)-**5d** (up to 82% ee). Deacetylation of (-)-**6d** with K₂CO₃ in MeOH yielded quantitatively (-)-**5d** with 99% ee, being (*R*)-configured at C(6), as assigned by the *Mosher* method. Novozyme 435 also worked well in the resolution of (±)-**5d** with vinyl trifluoroacetate to afford the corresponding acetate (-)-**6f** (98% ee) and (+)-**5d** (89% ee). Thus, in this manner, enantiomerically pure dihydroxytropane building blocks are conveniently accessible, which can be used for

For previous work on regio- and/or enantioselective lipase-catalyzed alkoxycarbonylation of diols, see [25].

further manipulations. In contrast, when a free OH group adjacent to the acyl function is present, as in removal of MOM in **6d** or enzymatic acylation of **2a** with vinyl trifluoroacetate, acyl migration was favored, leading either to racemic products, or the intermediate acetoxonium ions were trapped as dioxole **9**. Even the use of alkoxycarbonylation reagents **10** did not overcome the strong neighboring-group effect of the second OH group in diol **2a**.

Generous financial support by the *Deutsche Forschungsgemeinschaft*, the *Fonds der Chemischen Industrie*, and the *Ministerium für Wissenschaft*, *Forschung und Kunst des Landes Baden-Württemberg* is gratefully acknowledged. We would like to thank *Bianca Wölfling* for her skilful technical assistance.

Experimental Part

1. General. Commercial reagents were used without further purification unless otherwise indicated. All solvents were distilled prior to use. Reactions were performed in oven-dried glassware. Flash chromatography (FC): was performed on silica gel 60 (230–400 mesh; *Fluka*). GC: *Hewlett-Packard HP* 6890 instrument; column *HP* 5*TA* (30 m × 0.32 mm); temp. program: 16° min⁻¹ gradient from 80° to 300°; *Finnigan Trace GC 2000 Ultra*, column trifluoroacetyl- γ -cyclodextrine (30 m × 0.25 mm), *Lipodex E*, *Bondex un-* β , *Bondex un-* α , *Bondex un-* α + β , *Amidex P2210*. M.p.: *Büchi SMP-20*; uncorrected. IR Spectra: *Bruker Vector-22* FT-IR spectrophotometer; in cm⁻¹. ¹H- and ¹³C-NMR spectra: *Bruker Avance-500* instrument; at 500/125 MHz; δ in ppm, *J* in Hz; signal assignments are based on DEPT and COSY experiments; * denotes signals of the minor rotamer, and * denotes the minor diastereoisomer. MS and ESI-MS: *Finnigan MAT-95*, *Varian MAT-711*, and *Bruker Daltonics micrOTOF_Q*; in *m/z* (rel. %).

2. Methyl 6-Hydroxy-3-oxo-7-[(trimethylsilyl)oxy]-8-azabicyclo[3.2.1]octane-8-carboxylate ((±)-5a). A soln. of TMSCl (92 µl, 0.716 mmol) in CH₂Cl₂ (1 ml) was added dropwise to a soln. of 2a (140 mg, 0.651 mmol) and ⁱPr₂EtN (215 µl, 1.30 mmol) in CH₂Cl₂ (6 ml) under N₂, and the mixture was stirred for 16 h. After removal of the solvent and all volatile materials in vacuo, the residue was chromatographed (SiO₂; AcOEt/hexane 4:1; R_f (AcOEt/hexane 2:1) 0.51) to give (±)-5a (110 mg, 0.383 mmol, 60%). Colorless oil. FT-IR (ATR): 3472m, 1702vs, 1451s, 1394s, 1253s, 1094s, 1009m, 886s, 632s. ¹H-NMR (500 MHz, CDCl₃): 0.19 (s, Me₃Si, Me₃Si*); 2.40 (s, 1 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 2.44 (s, 2 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 2.47 (s, 1 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 2.53-2.63, 2.65-2.75 (2m, 2×2 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 3.45 (br. s, OH*); 3.54-3.60 (br. m, OH); 3.77 (s, MeO, MeO*); 3.91-3.96 (m, 2 H, H-C(6), H-C(6)*); 4.02 (s, 1 H, H-C(7)); 4.03 (s, 1 H, H-C(7)*); 4.20-4.27 (m, 1 H, H-C(1)* or H-C(5)*); 4.31-4.40 (br. m, 2 H, H-C(1), H-C(5)); 4.43-4.48 (m, 1 H, H-C(1)* or H-C(5)*). ¹³C-NMR (125 MHz, CDCl₃): 0.0 (Me₃Si, Me₃Si*); 45.7, 46.0, 46.3 (C(2), C(4), C(2)*, C(4)*); 53.2 (MeO, MeO*); 61.4, 61.5, 61.7 (C(1), C(5), C(1)*, C(5)*); 74.1, 74.7, 75.5 (C(6), C(7), C(6)*, C(7)*); 155.3 (COO, COO*); 171.4 (OCO, OCO^*) ; 206.0 $(C(3), C(3)^*)$. CI-MS: 288 $(40, [M+H]^+)$, 256 (100), 240 (20), 213 (20), 197 (10), 155 (15), 123 (30), 103 (15). Anal. calc. for C₁₂H₂₁NO₅Si (287.39): C 50.15, H 7.37, N 4.87; found: C 50.05, H 7.32, N 4.54.

3. *Methyl* 7-{[(tert-*Butyl*)*dimethylsilyl*]*oxy*]-6-*hydroxy*-3-*oxo*-8-*azabicyclo*[3.2.1]*octane*-8-*carboxy*-*late* ((\pm)-**5b**). A soln. of TBSCl (14.5 mg, 0.095 mmol) in CH₂Cl₂ (1 ml), was added dropwise to a soln. of **2a** (17 mg, 0.079 mmol), Et₃N (0.1 ml), and DMAP (5 mg) in CH₂Cl₂ (1 ml) at 0°, and the mixture was stirred at r.t. for 5 h. Then CH₂Cl₂ (30 ml) was added, and the mixture washed with 1N aq. HCl (2 × 10 ml). The org. layer was successively washed with a sat. soln. of NaHCO₃ and H₂O (10 ml each), dried (Na₂SO₄), and concentrated *in vacuo*. The residue was purified by FC (SiO₂; AcOEt/hexane 1:1; $R_{\rm f}$ 0.44) to give (\pm)-**5b** (21 mg, 0.064 mmol, 81%). Colorless solid. M.p. 90°. FT-IR (ATR): 3486*m*, 2958*m*, 2857*m*, 1703*vs*, 1446*s*, 1386*vs*, 1251*s*, 1198*s*, 1080*vs*, 1008*s*, 772*vs*. ¹H-NMR (500 MHz, CDCl₃): 0.12 (*s*, Me₂Si); 0.14 (*s*, Me₂Si^{*}); 0.91 (*s*, Me₃C, Me₃C^{*}); 2.40, 2.44, 2.47, 2.49 (4*s*, 4 × 1 H, H–C(2), H–C(4), H–C(2)*, H–C(4)*); 3.58 (*d*, *J* = 5.2, OH); 3.77 (*s*, COOMe, COOMe*); 3.92–3.98 (*m*, 2 H, H–C(6), H–C(6)*); 4.05 (br. *s*, 1 H, H–C(7)*); 4.06 (*s*, 1 H, H–C(7)); 4.23–4.29 (*m*, 1 H, H–C(1)* or

 $\begin{aligned} H-C(5)^*); & 4.31-4.41 & (m, 2 H, H-C(1), H-C(5)); & 4.44-4.51 & (m, 1 H, H-C(1)^* \text{ or } H-C(5)^*). \\ {}^{13}C-NMR & (125 MHz, CDCl_3): & -5.2, & -4.8 & (Me_2Si, Me_2Si^*); & 18.1 & (Me_3C, Me_3C^*); & 25.6 & (Me_3C, Me_3C^*); \\ & 45.4, 45.7, 45.9 & (C(2), C(4), C(2)^*, C(4)^*); & 52.9 & (MeO, MeO^*); & 61.2, & 61.5 & (C(1), C(5), C(1)^*, C(5)^*); & 74.1, \\ & 74.6 & (C(6), C(6)^*); & 75.0, & 75.7 & (C(7), C(7)^*); & 155.0 & (COO, COO^*); & 205.6 & (C(3), C(3)^*). & CI-MS: & 330.2 \\ & (100, [M+H]^+), & 298 & (10), & 272 & (75), & 257 & (20), & 240 & (20), & 212 & (15), & 197 & (10), & 127 & (10), & 75 & (10). & Anal. & calc. \\ & for C_{15}H_{27}NO_5Si & (329.47): C & 54.68, H & 8.26, N & 4.25; & found: C & 54.71, H & 8.26, N & 4.13. \\ \end{aligned}$

3.1. *Methyl* 6-Hydroxy-3-oxo-7-[(triethylsilyl)oxy]-8-azabicyclo[3.2.1]octane-8-carboxylate ((\pm)-**5c**). As described above for **5b**, from **2a** (81 mg, 0.38 mmol), Et₃N (140 µl), DMAP (12 mg) in CH₂Cl₂ (3 ml), and TESCl (82 µl, 0.49 mmol); FC with AcOEt/hexane 1:2. Yield: 92% (114 mg, 0.35 mmol). Colorless oil. TLC: $R_{\rm f}$ 0.34. FT-IR (ATR): 3475*m*, 2955*m*, 2912*m*, 2878*m*, 1703vs, 1449*s*, 1390*s*, 1189*m*, 1091vs, 1005*s*, 729vs. ¹H-NMR (500 MHz, CDCl₃): 0.65 (*q*, *J* = 8.0, 12 H, SiCH₂Me, SiCH₂Me*); 0.96 (*t*, *J* = 8.0, 18 H, SiCH₂Me, SiCH₂Me*); 2.40 (*s*, 1 H, H-C(2)* or H-C(4)*); 2.43 (*s*, 2 H, H-C(2), H-C(4)); 2.52 - 2.62, 2.64 - 2.75 (2*m*, 2 × 2 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 3.51 - 3.57 (br. *m*, OH*); 3.61 - 3.69 (br. *m*, OH); 3.76 (*s*, COOM*e*, COOM*e**); 3.92 - 3.96 (*m*, 2 H, H-C(6), H-C(6)*); 4.02 - 4.07 (*m*, 2 H, H-C(7), H-C(7)*); 4.20 - 4.28 (br. *m*, 1 H, H-C(1)* or H-C(5)*); 4.30 - 4.40 (br. *m*, 2 H, H-C(1), H-C(5)); 4.42 - 4.50 (br. *m*, 1 H-C(1)* or H-C(5)*). ¹³C-NMR (125 MHz, CDCl₃): 4.5 (SiCH₂Me, SiCH₂Me*); 6.5 (SiCH₂Me, SiCH₂Me*); 5.4.4 5.7, 45.8, 46.1 (C(2), C(4), C(2)*, C(4)*); 52.9 (MeO, MeO*); 61.3, 61.5 (C(1), C(5), C(1)*, C(5)*); 74.1, 74.6, 75.3 (C(6), C(7), C(6)*, C(7)*); 155.0 (COO, COO*); 205.7 (C(3), C(3)*). CI-MS: 330.1 (100, [*M* + H]⁺), 300 (90), 268 (65), 255 (15), 240 (20), 225 (15), 196 (10), 155 (20), 127 (10), 103 (10), 87 (10). Anal. calc. for C₁₅H₂₇NO₅Si (329.47): C 54.68, H 8.26, N 4.25; found: C 54.82, H 8.29, N 4.16.

4. Methyl 6-Hydroxy-7-(methoxymethoxy)-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate ((\pm)-5d). MOMCl (140 µl, 1.86 mmol) was added dropwise to a soln. of 2a (200 mg, 0.93 mmol), ⁱPr₂EtN (790 µl, 4.65 mmol), and DMAP (12 mg, 0.09 mmol) in anh. CH_2Cl_2 (3 ml) at 0°, and the mixture was stirred at 0° for 0.5 h and for a further 16.5 h at r.t. Then, CH₂Cl₂ (30 ml) was added, and the mixture was washed with a sat. soln. of NH₄Cl (20 ml). The org. layer was dried (Na₂SO₄) and concentrated. The residue was purified by FC (SiO₂; AcOEt/hexane $3:1; R_f 0.23$) to give (±)-5d (116 mg, 0.45 mmol, 48%). Yellowish oil. FT-IR (ATR): 3438m, 2954m, 2903m, 2828m, 1698vs, 1451s, 1398s, 1192m, 1102s, 1040s. ¹H-NMR (500 MHz, CDCl₃): 2.44 (s, 2 H, H-C(2)*, H-C(4)*); 2.47 (s, 2 H, H-C(2), H-C(4)); 2.53-2.75 (m, 4 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 3.23 (br. s, OH*); 3.33 (br. s, OH); 3.40 (s, CH₂OMe, CH₂OMe*); 3.76 (s, COOMe, COOMe*); 3.97 (s, 1 H, H-C(6)*); 3.99 (s, 1 H, H-C(6)); 4.07-4.10 (m, 2 H, H-C(7), H-C(7)*; 4.34-4.59 (br. m, 4 H, H-C(1), H-C(5), H-C(1)*, H-C(5)*); $4.70 (d, J = 10^{-1})$ 6.7, CH₂); 4.73 (*d*, *J* = 6.8, CH₂*). ¹³C-NMR (125 MHz, CDCl₃): 45.2, 45.6, 45.7, 46.0 (C(2), C(4), C(2)*, C(4)*); 52.9 (MeO, MeO*); 56.2 (CH₂OMe, CH₂OMe*); 59.0, 61.3 (C(1), C(5), C(1)*, C(5)*); 74.3 (C(6)*); 74.9 (C(6)); 78.9 (C(7)); 79.7 (C(7)*); 96.9 (CH₂, CH₂*); 154.9 (COO, COO*); 205.3 (C(3), C(3)*). EI-MS: 259.1 (10, M⁺⁺), 214 (20), 197 (25), 155 (85), 127 (30), 87 (15), 59 (20), 45 (100), 28 (20). HR-EI-MS: 259.1056 ($M^{+\cdot}$, $C_{11}H_{17}NO_6^{+\cdot}$; calc. 259.1056).

5. *Methyl* 6-Acetoxy-7-(*methoxymethoxy*)-3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (rac-6d). *Typical Procedure*. Ac₂O (20 µl, 0.20 mmol) was added to a soln. of 5d (30 mg, 116 µmol), DMAP (5 mg, 41.0 µmol), and Et₃N (55 µl, 0.31 mmol) in anh. CH₂Cl₂ (1.5 ml), and the mixture was stirred at r.t. for 0.5 h. Then, CH₂Cl₂ (20 ml) was added, and the mixture was washed successively with 0.1N aq. NaOH and brine (10 ml each). The org. layer was dried (Na₂SO₄) and concentrated *in vacuo*. The crude product was purified by FC (SiO₂; AcOEt/hexane 2:1; R_f (AcOEt/hexane 3:1) 0.32) to give 6d (26 mg, 86.3 µmol, 74%). Colorless oil. FT-IR (ATR): 2956*m*, 2900*m*, 1739*s*, 1702*vs*, 1450*s*, 1396*s*, 1234*s*, 1196*m*, 1104*s*, 1042*s*. ¹H-NMR (500 MHz, CDCl₃): 2.09 (*s*, MeCO, MeCO*); 2.48–2.50 (*m*, 2 H, H–C(2)* or H–C(4)*); 2.50–2.52 (*m*, 1 H, H–C(2) or H–C(4)*); 2.53 (*s*, 1 H, H–C(2) or H–C(4)); 2.57–2.67, 2.76–2.78 (2*m*, 2×2 H, H–C(2), H–C(4), H–C(2)*, H–C(4)*); 3.37 (*s*, CH₂OM*e*, CH₂OM*e**); 3.77 (*s*, COOMe, COOMe*); 4.07, 4.08 (2*s*, 2×1 H, H–C(7), H–C(7)*); 4.42–4.61 (br. *m*, 4 H, H–C(1), H–C(5), H–C(1)*, H–C(5)*); 4.57 (*d*, *J* = 11.8, CH₂); 4.59 (*d*, *J* = 11.8, CH₂*); 4.93 (*s*, 1 H, H–C(6)); 4.94 (*s*, 1 H, H–C(6)*). ¹³C-NMR (125 MHz, CDCl₃): 20.6 (MeCO, MeCO*); 45.1, 45.6, 45.8, 46.2 (C(2), C(4), C(2)*, C(4)*); 53.0 (COOM*e*, COOM*e**); 56.1 (CH₂OM*e*, CH₂OM*e**); 58.0, 59.4 (C(1), C(5), C(1)*, C(5)*); 76.2 (C(6), C(6)*); 78.9, 79.8 (C(7), C(7)*); 97.3 (CH₂, CH₂*); 154.5 (COO, COO*); 170.3 (OCO, OCO^*) ; 204.6 $(C(3), C(3)^*)$. EI-MS: 301.1 $(5, M^+,)$, 256 (20), 241 (25), 214 (20), 196 (60), 154 (100), 127 (20), 59 (15), 45 (100), 28 (15). HR-EI-MS: 301.1161 $(M^+, C_{13}H_{19}NO_7^+; calc. 301.1162)$.

5.1. *Methyl 6-Acetoxy-7-{[(*tert-*butyl*)*dimethy*)*silyl*]*oxy*]*-3-oxo-8-azabicyclo*[*3.2.1*]*octane-8-carbox-ylate* (*rac*-**6b**). $R_{\rm f}$ (AcOEt/hexane 1:3) 0.25. Yield: 91%. Colorless oil. FT-IR (ATR): 2955*m*, 2930*m*, 2857*m*, 1740*s*, 1703*vs*, 1449*s*, 1388*s*, 1237*vs*, 1194*s*, 1101*s*, 1007*s*, 775*s*, 679*m*. ¹H-NMR (500 MHz, CDCl₃): 0.03 (*s*, Me₂Si); 0.08 (*s*, Me₂Si^{*}); 0.87 (*s*, Me₃C, Me₃C^{*}); 2.08 (*s*, MeCO); 2.09 (*s*, MeCO^{*}); 2.43, 2.46 (2*s*, $2 \times 1 \text{ H}, \text{H}-\text{C}(2), \text{H}-\text{C}(2), \text{H}-\text{C}(4), \text{H}-\text{C}(4)^*); 2.49, 2.53 (2$ *d*,*J* $= 10.5, <math>2 \times 1 \text{ H}, \text{H}-\text{C}(2), \text{H}-\text{C}(2)^*, \text{H}-\text{C}(4), \text{H}-\text{C}(4)^*); 3.77 ($ *s*, COOMe); 3.78 (*s*, COOMe^{*}); 4.17 (*d*,*J*= 6.2, 1 H, H-C(2), H-C(2)^{*}, H-C(4), H-C(4)^{*}); 3.77 (*s*, COOMe); 3.78 (*s*, COOMe^{*}); 4.17 (*d*,*J*= 6.2, 1 H, H-C(1), H-C(1)^{*}, H-C(5), H-C(5)^{*}); 4.86 (*d*,*J*= 5.8, 1 H, H-C(6)); 4.89 (*d*,*J*= 5.8, 1 H, H-C(6)^{*}). ¹³C-NMR (125 MHz, CDCl₃): -5.3, -5.1 (Me₂Si, Me₂Si^{*}); 18.1 (Me₃C, Me₃C^{*}); 20.7 (*Me*CO,*Me*CO^{*}); 25.6 (*Me*₃C,*Me*₃C^{*}); 45.3, 45.6, 45.9, 46.1 (C(2), C(4), C(2)^{*}, C(4)^{*}); 52.9 (MeO, MeO^{*}); 58.3, 58.4, 61.8 (C(1), C(5), C(1)^{*}, C(5)^{*}); 75.2, 75.9 (C(7), C(7)^{*}); 76.5, 77.1 (C(6), C(6)^{*}); 154.5, 154.7 (COO, COO^{*}); 170.1 (OCO, OCO^{*}); 205.0 (C(3), C(3)^{*}). CI-MS: 372.2 (100, [*M*+ H]⁺), 340 (10), 314 (50), 272 (15), 240 (10), 212 (10), 155 (5), 127 (5), 43 (5). HR-ESI-MS: 394.1661 ([*M*+ Na]⁺, C₁₇H₂₉NNaO₆Si⁺; calc. 394.1662).

5.2. *Methyl 6-Acetoxy-3-oxo-7-[(triethylsilyl)oxy]-8-azabicyclo[3.2.1]octane-8-carboxylate (rac-***6c**). $R_{\rm f}$ (AcOEt/hexane 1:3) 0.21. Yield: 78%. Colorless oil. FT-IR (ATR): 2955*m*, 2912*m*, 2878*m*, 1740*s*, 1703*vs*, 1449*s*, 1386*s*, 1229*vs*, 1102*s*, 1005*s*, 727*s*. ¹H-NMR (500 MHz, CDCl₃): 0.59 (*q*, *J* = 8.0, 12 H, SiCH₂Me, SiCH₂Me*); 0.94 (*t*, *J* = 8.0, 18 H, SiCH₂Me, SiCH₂Me*); 2.08 (*s*, MeCO); 2.09 (*s*, MeCO*); 2.43, 2.46 (2*s*, 2 × 1 H, H-C(2), H-C(2)*); 2.47-2.51, 2.51-2.55 (2*m*, 2 × 1 H, H-C(4), H-C(4)*); 2.56-2.65, 2.68-2.78 (2*m*, 2 × 2 H, H-C(2), H-C(4), H-C(2)*, H-C(4)*); 3.77 (*s*, MeO, MeO*); 4.16-4.22 (*m*, 2 H, H-C(7), H-C(7)*); 4.23-4.29, 4.31-4.36, 4.42-4.48, 4.53-4.59 (4*m*, 4 × 1 H, H-C(1), H-C(5), H-C(1)*, H-C(5)*); 4.84-4.90 (*m*, 2 H, H-C(6), H-C(6)*). ¹³C-NMR (125 MHz, CDCl₃): 4.3 (SiCH₂Me, SiCH₂Me*); 6.6 (SiCH₂Me, SiCH₂Me*); 20.7 (*Me*CO, *Me*CO*); 4.53, 45.7, 45.8, 46.1 (C(2), C(4), C(2)*, C(4)*); 52.9 (MeO, MeO*); 58.3, 61.8 (C(1), C(5), C(1)*, C(5)*); 74.8 (C(7)*); 75.6 (C(7)); 76.5 (C(6)); 77.1 (C(6)*); 154.7 (COO, COO*); 170.2 (OCO, OCO*); 20.0 (C(3), C(3)*). CI-MS: 372.1 (100, [*M* + H]⁺), 342 (75), 330 (30), 300 (60), 268 (25), 237 (15), 196 (5), 145 (10), 49 (10). HR-ESI-MS: 394.1658 ([*M* + Na]⁺, C₁₇H₂₉NNaO₆Si⁺; calc. 394.1662).

5.3. *Methyl* 7-(*Methoxymethoxy*)-3-oxo-6-(*trifluoroacetoxy*)-8-azabicyclo[3.2.1]octane-8-carboxylate (*rac*-**6f**). (CF₃CO)₂O instead of Ac₂O. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.15. Yield: 53%. Colorless oil. FT-IR (ATR): 3392w, 2958w, 1784w, 1696vs, 1457s, 1402s, 1193s, 1107m, 632s. ¹H-NMR (500 MHz, CDCl₃): 2.51, 2.52, 2.54, 2.55 (4s, 4 × 1 H, H–C(2), H–C(4), H–C(2)*, H–C(4)*); 2.68, 2.79 (2dt, J =17.0, 4.5, 2 × 2 H, H–C(2), H–C(4), H–C(2)*, H–C(4)*); 3.36 (*s*, CH₂OMe, CH₂OMe*); 3.80 (*s*, COOMe, COOMe*); 4.14, 4.15 (2*s*, 2 × 1 H, H–C(7), H–C(7)*); 4.47–4.52 (br. *m*, 1 H, H–C(1) or H–C(5)); 4.54 (*d*, J = 7.0, CH₂*); 4.58 (*d*, J = 7.0, CH₂); 4.57–4.62, 4.64–4.69, 4.73–4.78 (3*m*, 3 × 1 H, H–C(1) or H–C(5), H–C(1)*, H–C(5)*); 5.06–5.12 (*m*, 2 H, H–C(6), H–C(6)*). ¹³C-NMR (125 MHz, CDCl₃): 45.2, 45.4, 45.7, 45.9 (C(2), C(4), C(2)*, C(4)*); 53.2 (COOMe, COOMe*); 56.4 (CH₂OMe, CH₂OMe*); 57.5, 59.0, 59.1 (C(1), C(5), C(1)*, C(5)*); 78.5, 79.3 (C(7), C(7)*); 79.1, 79.9 (C(6), C(6)*); 97.2, 97.3 (CH₂, CH₂*); 114.4 (*q*, J = 285.2, CF₃, CF₃*); 154.4 (COO, COO*); 157.0 (*q*, J =36.9, OCOCF₃, OCOCF₃*); 204.0 (C(3), C(3)*). CI-MS: 356.1 (20, [M +H]⁺), 324 (100), 294 (50), 260 (15), 228 (45), 196 (35), 154 (20), 115 (60), 45 (35). Anal. calc. for C₁₃H₁₆F₃NO₇ (355.27): C 43.95, H 4.54, N 3.94; found: C 43.98, H 4.69, N 3.85.

5.4. *Methyl* 4,5,6,7,8,8*a*-Hexahydro-2-hydroxy-6-oxo-2-(trifluoromethyl)-4,8-epimino-3*a*H-cyclohepta/d]/1,3]dioxole-9-carboxylate (**9**). (CF₃CO)₂O instead of Ac₂O. R_f (AcOEt) 0.61. Yield: 73% (82% GC purity). Colorless solid. M.p. 183°. FT-IR (ATR): 3301*m*, 1694vs, 1674vs, 1448s, 1402vs, 1228s, 1173vs, 1056vs, 984vs, 644s. ¹H-NMR (500 MHz, (CD₃)₂CO): 2.43–2.49 (*m*, 4 H, H–C(2), H–C(4), H–C(2)[#], H–C(4)[#]); 2.70–2.76 (*m*, 4 H, H–C(2), H–C(4), H–C(2)[#], H–C(4)[#]); 3.70 (*s*, Me[#]); 3.72 (*s*, Me); 4.48 (br. *d*, *J* = 5.3, 2 H, H–C(1), H–C(5)); 4.53, 4.57 (2*d*, *J* = 5.2, 2 × 1 H, H–C(1)[#], H–C(5)[#]); 4.77 (*d*, *J* = 3.8, 2 H, H–C(6), H–C(7)); 4.93 (*d*, *J* = 1.6, 2 H, H–C(6)[#], H–C(7)[#]); 7.57 (br. *s*, OH[#]); 8.24 (br. *s*, OH). ¹³C-NMR (500 MHz, (CD₃)₂CO): 43.7, 44.2 (C(2), C(4)); 44.2, 44.7 (C(2)[#], C(4)[#]); 52.4 (MeO[#]); 52.6 (MeO); 58.7, 58.8 (C(1)[#], C(5)[#]); 59.3 (C(1), C(5)); 84.2, 85.1 (C(6), C(7)); 84.3, 85.0 (C(6)[#], C(7)[#]); 115.8 (q, J = 25.4, $F_3CCOH^{#}$); 116.7 (q, J = 25.3, F_3CCOH); 120.5 (q, J = 285.1, $F_3C^{#}$); 121.5 (q, J = 288.3, F_3C), 154.5 ($CO^{#}$); 155.1 (CO); 203.9 (C(3)); 204.3 ($C(3)^{#}$). EI-MS: 311.1 (35, M^{++}), 242 (10), 197 (10), 154 (100), 127 (30), 97 (10), 82 (10), 59 (15), 42 (10). Anal. calc. for $C_{11}H_{12}F_3NO_6$ (311.21): C 42.45, H 3.89, N 4.50; found: C 42.49, H 4.06, N 4.31.

6. General Procedure for Enzymatic Acylations. To a soln. of **2a** or rac-**5d** (0.07 mmol) in the given solvent (1 ml) was added vinyl acetate or vinyl trifluoroacetate (13 μ l), molecular sieves (4 Å; 4 pellets), and the respective enzyme (20–27 mg). The mixture was stirred at 40°. At time intervals from 1 to 3 h and sedimentation of the enzyme, aliquots of 30 μ l were taken from the supernatant, filtered, diluted with CH₂Cl₂ (300 μ l), and directly analyzed by cap. GC on chiral phase *Bondex un-β*. The reaction was terminated after 48 h.

For separation and isolation of (-)-6d or (-)-6f, and (+)-5d, the mixture was filtered through *Celite*, and the filtrate was concentrated. Chromatography of the residue on SiO₂ with AcOEt/hexane 2:1 gave in a first fraction 6d (R_f (AcOEt/hexane 3:1) 0.32) and in a second fraction 5d (R_f (AcOEt/hexane 3:1) 0.23). Second chromatography on SiO₂ with AcOEt/hexane 1:2.5 \rightarrow 1:2 gave in a first fraction 6f (R_f (AcOEt/hexane 3:1) 0.63) and in a second fraction 5d (R_f (AcOEt/hexane 3:1) 0.23).

7.1. *Methyl* (6R,7S)-7-(*Methoxymethoxy*)-6-[(R)- α -*methoxy*- α -(*trifluoromethyl*)phenylacetyl]-3oxo-8-azabicyclo[3.2.1]octane-8-carboxylate ((6R,7S)-(R)-**6e**). To a soln. of (-)-**5d** (17 mg, 65.6 µmol) in anh. pyridine (0.5 ml) was added (+)-(S)-MTPACl (24 µl), and the mixture was stirred at r.t. for 18 h. After addition of toluene (1 ml), the mixture was concentrated three times *in vacuo*. The residue was purified by FC (SiO₂; AcOEt/hexane 1:1; R_f 0.34) to give (6R,7S)-(R)-**6e** (24 mg, 50.5 µmol, 77 %). Colorless solid. M.p. 105°. FT-IR (ATR): 2963w, 2860w, 1742vs, 1703vs, 1451s, 1393s, 1337s, 1260vs, 1158vs, 1105s, 1045vs, 996vs, 921s, 803m, 771s, 715vs, 696vs, 640s. ¹H-NMR (500 MHz, C₂D₂Cl₄, 393 K): 2.46 (dt, J = 16.8, 1.7, H_{eq}-C(4)); 2.47 (dt, J = 16.8, 1.7, H_{eq}-C(2)); 2.65 (dd, J = 16.8, 5.3, H_{ax}-C(2)); 2.67 (dd, J = 16.8, 5.3, H_{ax}-C(4)); 3.30 (s, CH₂OMe); 3.54 (s, MeO); 3.70 (s, COOMe); 4.14 (d, J = 6.2, H-C(7)); 4.50 (s, CH₂O); 4.52-4.57 (m, H-C(1), H-C(5)); 5.08 (d, J = 6.2, 1 H, H-C(6)); 7.33-7.37 (m, 3 arom. H); 7.56-7.58 (m, 2 arom. H). ¹³C-NMR (125 MHz, C₂D₂Cl₄, 393 K): 44.9 (C(4)); 45.4 (C(2)); 52.1 (COOMe); 54.7 (MeO); 55.3 (CH₂OMe); 57.9, 58.6 (C(1), C(5)); 78.3 (C(6)); 79.3 (C(7)); 96.4 (CH₂O); 127.1, 127.6, 128.9, 131.7 (Ph); 153.8 (NCO); 165.4 (CO); 202.9 (C(3)). EI-MS: 475.1 (10, M⁺⁻), 430 (30), 370 (5), 241 (25), 210 (10), 197 (35), 189 (100), 154 (50), 127 (10), 114 (15), 105 (10), 45 (50). HR-ESI-MS: 498.1330 ([M + Na]⁺, C₂₁H₂₄F₃NNAO^{*}₈; calc. 498.1352).

7.2. *Methyl* (6R,7S)-7-(*Methoxymethoxy*)-6-[(S)- α -*methoxy*- α -(*trifluoromethyl*)*phenylacetyl*]-3oxo-8-azabicyclo[3.2.1]octane-8-carboxylate ((6R,7S)-(S)-**6e**). As described above, from (-)-**5d** and (-)-(*R*)-MTPACl. *R*_f (AcOEt/hexane 1:1) 0.34. Yield: 40%. Colorless solid. ¹H-NMR (500 MHz, C₂D₂Cl₄, 393 K): 2.46 (*dt*, *J* = 16.8, 1.7, H_{eq}-C(2)); 2.51 (*dt*, *J* = 16.8, 1.7, H_{eq}-(4)); 2.66 (*dd*, *J* = 16.8, 5.3, H_{ax}-C(2)); 2.67 (*dd*, *J* = 16.8, 5.3, H_{ax}-C(4)); 3.25 (*s*, CH₂OMe); 3.50 (*s*, MeO); 3.71 (*s*, COOMe); 4.11 (*d*, *J* = 6.2, H-C(7)); 4.40 (*d*, *J* = 12.1, CH₂O); 4.42 (*d*, *J* = 12.1, CH₂O); 4.52-4.55 (*m*, H-C(1)); 4.58-4.61 (*m*, H-C(5)); 5.10 (*d*, *J* = 6.2, H-C(6)); 7.33-7.39 (*m*, 3 arom. H); 7.54-7.57 (*m*, 2 arom. H). ¹³C-NMR (125 MHz, C₂D₂Cl₄, 393 K): 44.9 (C(4)); 45.5 (C(2)); 52.1 (COOMe); 54.6 (MeO); 55.2 (CH₂OMe); 58.0 (C(5)); 58.6 (C(1)); 78.0 (C(6)); 79.1 (C(7)); 84.4 (*q*, *J* = 28.4, CCF₃); 96.2 (CH₂O); 122.7 (*q*, *J* = 289.3, CF₃); 127.2, 127.6, 128.9, 131.6 (Ph); 153.8 (NCO); 165.4 (CO); 202.9 (C(3)).

8. *Methyl* 4,5,6,7,8,8*a*-Hexahydro-2,6-dioxo-4,8-epimino-3*a*H-cyclohepta[d][1,3]dioxole-9-carboxylate (**12**). To a soln. of **2a** (50 mg, 0.233 mmol), DMAP (2 mg, 16.4 µmol), and Et₃N (90 µl, 0.652 mmol) in anh. CH₂Cl₂ (1.5 ml) was added at 0° methyl chloroformate (18 µl, 0.233 mmol), and the mixture was stirred at r.t. for 3 h. Then, CH₂Cl₂ (10 ml) was added, and the mixture was successively washed with a soln. of NaHCO₃ and brine (10 ml each). The org. layer was dried (Na₂SO₄) and concentrated *in vacuo*. The crude product was purified by FC (SiO₂; AcOEt/hexane 2 :1; R_f (AcOEt/hexane 3 :1) 0.40) to give **12** (51 mg, 0.212 mmol, 91%). Colorless solid. M.p. 159°. FT-IR (ATR): 3011*w*, 2962*w*, 2908*w*, 1779*v*s, 1713*v*s, 1697*v*s, 1453*s*, 1379*v*s, 1166*v*s, 1078*v*s, 1053*v*s, 979*s*, 766*v*s, 687*s*. ¹H-NMR (300 MHz, CDCl₃): 2.52 (br. *d*, *J* = 16.8, 2 H, H−C(2), H−C(4)); 2.68−2.94 (br. *m*, 2 H, H−C(2), H−C(4)); 3.83 (*s*, Me); 4.61− 4.82 (br. *m*, H−C(1), H−C(5)); 4.90 (*s*, H−C(6), H−C(7)). ¹³C-NMR (125 MHz, CDCl₃): 44.0, 44.5 (C(2), C(4)); 53.6 (Me); 58.6 (C(1), C(5)); 81.0, 81.6 (C(6), C(7)); 153.1 (OCO); 154.4 (COO); 202.7 (C(3)). EI-MS: 241.1 (30, M^{++}), 154 (100), 127 (55), 82 (20), 59 (30), 42 (30). HR-ESI-MS: 264.0474 ([M + Na]⁺, C₁₀H₁₁NNaO⁶₆; calc. 264.0484).

REFERENCES

- G. P. Pollini, S. Benetti, C. De Risi, V. Zanirato, *Chem. Rev.* 2006, *106*, 2434; S. Singh, *Chem. Rev.* 2000, *100*, 925; D. O'Hagan, *Nat. Prod. Rep.* 2000, *17*, 435; T. Hemscheidt, *Top. Curr. Chem.* 2000, *209*, 175; A. H. Newman, G. E. Agoston, *Curr. Med. Chem.* 1998, *5*, 305; G. Fodor, in 'Rodd's Chemistry of Carbon Compounds', Ed. M. Sainsbury, Elsevier, Amsterdam, 1997, Vol. 4, pp. 251; M. Lounasmaa, T. Tamminen, 'The Alkaloids', Academic Press, New York, 1993, Vol. 44, p. 1.
- [2] a) A. J. Airaksinen, J. Lipsonen, M. Ahlgren, P. Vainiotalo, K. A. Bergström, R. Laatikainen, J. Vepsäläinen, *Tetrahedron* 2003, 59, 377; b) R. Lazny, A. Nodzewska, *Tetrahedron Lett.* 2003, 44, 2441; c) A. J. Airaksinen, M. Ahlgren, J. Vepsäläinen, J. Org. Chem. 2002, 67, 5019; d) J. Cheng, Z. Moore, E. D. Stevens, M. L. Trudell, J. Org. Chem. 2002, 67, 5433; e) A. Armstrong, G. Ahmed, B. Dominguez-Fernandez, B. R. Hayter, J. S. Wailes, J. Org. Chem. 2002, 67, 8610; f) L. Zhao, K. M. Johnson, M. Zhang, J. Flippen-Anderson, A. P. Kozikowski, J. Med. Chem. 2000, 43, 3283; g) G. Petrović, R. N. Saičić, Z. Čeković, Synlett 1999, 635; h) J. B. Bremner, R. J. Smith, G. J. Tarrant, *Tetrahedron Lett.* 1996, 37, 97; i) D. E. Justice, J. R. Malpass, *Tetrahedron Lett.* 1995, 36, 4689.
- [3] N. Cramer, S. Laschat, A. Baro, Organometallics 2006, 25, 2284.
- [4] N. S. Newcombe, N. S. Simpkins, J. Chem. Soc., Chem. Commun. 1995, 831; J. C. Lee, K. Lee, J. K. Cha, J. Org. Chem. 2000, 65, 4773.
- [5] N. Cramer, S. Laschat, A. Baro, W. Frey, Synlett 2003, 2175.
- [6] G. P. Pollini, C. De Risi, F. Lumento, P. Marchetti, V. Zanirato, Synlett 2005, 164; N. Cramer, S. Laschat, A. Baro, Synlett 2003, 2178.
- [7] U. T. Bornscheuer, R. J. Kazlauskas, 'Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations', Wiley-VCH, Weinheim, 1999, pp. 131 and pp. 156.
- [8] M. Edin, B. Martin-Matute, J.-E. Bäckvall, *Tetrahedron: Asymmetry* 2006, 17, 708; A.-L. Lee, S. V. Ley, Org. Biomol. Chem. 2003, 1, 3957; S. Akai, T. Naka, T. Fujita, Y. Takebe, T. Tsujino, Y. Kita, J. Org. Chem. 2002, 67, 411; M.-J. Kim, G.-B. Choi, J.-Y. Kim, H.-J. Kim, *Tetrahedron Lett.* 1995, 36, 6253; T. Ito, Y. Takagi, H. Tsukube, J. Mol. Catal., B 1997, 3, 259; N. Watanabe, T. Sugai, H. Ohta, Chem. Lett. 1992, 657; K. Prasad, H. Estermann, C.-P. Chen, O. Repic, G. E. Hardtmann, *Tetrahedron: Asymmetry* 1990, 1, 421; H. Estermann, K. Prasad, M. J. Shapiro, O. Repic, G. E. Hardtmann, J. J. Bolsterli, M. D. Walkinshaw, *Tetrahedron Lett.* 1990, 31, 445; H. Suemune, T. Harabe, Z.-F. Xie, K. Sakai, Chem. Pharm. Bull. 1988, 36, 4337.
- [9] O. Affolter, A. Baro, S. Laschat, P. Fischer, Z. Naturforsch., B 2007, 62, 82.
- [10] T. K. Lindhorst, 'Essentials of Carbohydrate Chemistry and Biochemistry', 2nd edn., Wiley-VCH, Weinheim, 2002.
- [11] C. J. O'Connor, R. H. Barton, J. Mol. Catal., B 1998, 4, 161; K. S. Bisht, A. Kumar, N. Kumar, V. S. Parmar, Pure Appl. Chem. 1996, 68, 749; A. Patti, C. Sanfilippo, M. Piattelli, G. Nicolosi, J. Org. Chem. 1996, 61, 6458; E. Ucciani, M. Schmitt-Rozieres, A. Debal, L. C. Comeau, Fett/Lipid 1996, 98, 206; K. Bremen, H.-J. Gais, Tetrahedron: Asymmetry 1996, 7, 3063; G. Nicolosi, A. Patti, M. Piattelli, C. Sanfilippo, Tetrahedron: Asymmetry 1995, 6, 519; G. Nicolosi, A. Patti, M. Piattelli, C. Sanfilippo, Tetrahedron: Asymmetry 1995, 6, 519; G. Nicolosi, A. Patti, M. Piattelli, C. Sanfilippo, Tetrahedron 1994, 5, 283; N. Murakami, T. Morimoto, H. Imamura, A. Nagatsu, J. Sakakibara, Tetrahedron 1994, 50, 1993; R. Lortie, M. Trani, F. Ergan, Biotechnol. Bioeng. 1993, 41, 1021; Z.-F. Xie, I. Nakamura, H. Suemune, K. Sakai, J. Chem. Soc., Chem. Commun. 1988, 966; D. H. G. Crout, V. S. B. Gaudet, K. Laumen, M. P. Schneider, J. Chem. Soc., Chem. Commun. 1986, 808.
- X. Xu, H. Mu, A. R. H. Skands, C.-E. Høy, J. Adler-Nissen, J. Am. Oil Chem. Soc. 1999, 76, 175;
 X. Xu, S. Balchen, C.-E. Høy, J. Adler-Nissen, J. Am. Oil Chem. Soc. 1998, 75, 301.
- [13] K. K. C. Liu, K. Nozaki, C. H. Wong, Biocatalysis 1990, 3, 169.
- [14] K. Lundell, P. Lehtinen, L. T. Kanerva, Adv. Synth. Catal. 2003, 345, 790; A. Liljeblad, J. Lindborg, A. Kanerva, J. Katajisto, L. T. Kanerva, Tetrahedron Lett. 2002, 43, 2471; T. Furutani, M. Furui, H. Ooshima, J. Kato, Enzyme Microb. Technol. 1996, 19, 578.
- [15] M. Edin, J. Steinreiber, J.-E. Bäckvall, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5761.
- [16] A. J. Moreno-Vargas, C. Schütz, R. Scopelliti, P. Vogel, J. Org. Chem. 2003, 68, 5632.

- [17] I. Fotakopoulou, E. Barbayianni, V. Constantinou-Kokotou, U. T. Bornscheuer, G. Kokotos, J. Org. Chem. 2007, 72, 782; P. Dominguez de Maria, C. Carboni-Oerlemans, B. Tuin, G. Bargeman, A. van der Meer, R. van Gemert, J. Mol. Catal., B 2005, 37, 36.
- [18] D. Fujita, N. Ichimaru, M. Abe, M. Murai, T. Hamada, T. Nishioka, H. Miyoshi, *Tetrahedron Lett.* 2005, 46, 5775.
- [19] J. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512; I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092.
- [20] M. Böhm, A. Vasella, Helv. Chim. Acta 2004, 87, 2566.
- [21] D. Askin, C. Angst, S. Danishefsky, J. Org. Chem. 1987, 52, 622.
- [22] T. Kametani, T. Katoh, M. Tsubuki, T. Honda, Chem. Pharm. Bull. 1987, 35, 2334.
- [23] M. Tsubuki, K. Kanai, H. Nagase, T. Honda, Tetrahedron 1999, 55, 2493.
- [24] T. Miyazawa, T. Yukawa, T. Koshiba, S. Ueji, R. Yanagihara, T. Yamada, Biotechnol. Lett. 2001, 23, 1547.
- [25] V. Gotor-Fernandez, S. Fernandez, M. Ferrero, V. Gotor, R. Bouillon, A. Verstuyf, *Bioorg. Med. Chem.* 2004, *12*, 5443; M. Diaz, V. Gotor-Fernandez, M. Ferrero, V. Gotor, *J. Org. Chem.* 2001, *66*, 4227; L. F. Garcia-Alles, V. Gotor, *J. Mol. Catal.*, *B* 1999, *6*, 407; V. Gotor, *Bioorg. Med. Chem.* 1999, *7*, 2189; M. Ferrero, S. Fernandez, V. Gotor, *J. Org. Chem.* 1997, *62*, 4358; R. Pulido, V. Gotor, *J. Chem. Soc., Perkin Trans. 1* 1993, 589; F. Moris, V. Gotor, *J. Org. Chem.* 1992, *57*, 2490.

Received August 6, 2007